Compact Representation of Near-Optimal Integer Programming Solutions
نویسندگان
چکیده
It is often useful in practice to explore near-optimal solutions of an integer programming problem. We show how all solutions within a given tolerance of the optimal value can be efficiently and compactly represented in a weighted decision diagram, once the optimal value is known. The structure of a decision diagram facilitates rapid processing of a wide range of queries about the near-optimal solution space. To obtain a more compact diagram, we exploit the property that such diagrams may become paradoxically smaller when they contain more solutions. We use sound decision diagrams, which innocuously admit some solutions that are worse than near-optimal. We describe a simple “sound reduction” operation that, when applied repeatedly in any order, yields a smallest possible sound diagram for a given problem instance. We find that sound reduction yields a structure that is typically far smaller than a tree that represents the same set of near-optimal solutions.
منابع مشابه
An L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem
This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...
متن کاملSolving a generalized aggregate production planning problem by genetic algorithms
This paper presents a genetic algorithm (GA) for solving a generalized model of single-item resource-constrained aggregate production planning (APP) with linear cost functions. APP belongs to a class of pro-duction planning problems in which there is a single production variable representing the total production of all products. We linearize a linear mixed-integer model of APP subject to hiring...
متن کاملWell-dispersed subsets of non-dominated solutions for MOMILP problem
This paper uses the weighted L$_1-$norm to propose an algorithm for finding a well-dispersed subset of non-dominated solutions of multiple objective mixed integer linear programming problem. When all variables are integer it finds the whole set of efficient solutions. In each iteration of the proposed method only a mixed integer linear programming problem is solved and its optimal solutions gen...
متن کاملFlux Distribution in Bacillus subtilis: Inspection on Plurality of Optimal Solutions
Linear programming problems with alternate solutions are challenging due to the choice of multiple strategiesresulting in the same optimal value of the objective function. However, searching for these solutions is atedious task, especially when using mixed integer linear programming (MILP), as previously applied tometabolic models. Therefore, judgment on plurality of optimal m...
متن کاملA generalized implicit enumeration algorithm for a class of integer nonlinear programming problems
Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017